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Tail dependent Time Series Analysis
Introduction
Examples of extreme values where tail dependence may lay:
• Huge stock drops
• Extreme weather conditions
• Large credit defaults

• Independence assumption typically does not hold in regard to time
series data.

• Besides, Random variables can show different patterns of
dependence in non-tail and extreme deviations, ignoring which may
yield misleading conclusions.

• We would like to make contribution to describing dependence in the
tail part of a distribution.
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Tail dependent Time Series Analysis
Introduction
• Traditional mean-based dependence measured by correlation

cor(X ,Y ) =
E[{X − E(X )}{Y − E(Y )}]√

var(x)var(Y )

concerns the co-movement around mean,

e.g.X > E(X )←→ Y > E(Y ).

• Tail dependence concerns the co-occurance of extremal events,

e.g.,X being extremal←→ Y being extremal,

and was firstly introduced as the dependence in the bivariate
distribution function.

λup = lim
u→1− Pr(X2 > F−1

X2
(u)|X1 > F−1

X1
(u)),

where λup is tail dependence of the bivariate upper tails.
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Tail Spectral Density Analysis

Tail Autocorrelation
• In the time series setting, tail dependence is often measured at

different lags. Zhang(2006) defines a k -lag dependence for time
series data: let UF = limu↑1 F−1(u)

ρk = lim
x↑UF

pr(Xk+1 > x | X1 > x).

• As a result, similar to the traditional autocorrelation, there can be an
infinite number of tail dependence measurements, one at each lag.

• Traditional autocorrelation analysis, however, can not be used to
study tail dependence. Instead, consider the tail autocorrelation

ρk,n =
pr(Xk+1 > xn | X1 > xn)− pr(Xk+1 > xn)

1− pr(X1 > xn)
,

which could be viewed as a standardized pre-asymptotic version of
the lag-k tail dependence.
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Tail Spectral Density Analysis

Tail Spectral Density Estimation
• Let ι =

√
−1 , we want to get a good estimation of the tail spectral

density :
fn(λ) =

1
2π

∑
|k|<n

ρk,neιkλ,

and naturally extend the conventional spectral density to the tail
setting using the tail autocorrelations.

• We use the lag-window estimator, which has been widely
implemented with non-tail setting :

f̂n(λ) =
1

2π

∑
|k|<n

ρ̂k,neιkλK
(

k
Bn

)
,

where K is a kernel function, and Bn is a positive bandwidth
sequence.
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Tail Adversarial Stability Framework

Introduction
• Consider a stationary system Xi = G(Fi) = (· · · , ϵi−1, ϵi), where ϵj , are

iid innovations. And let ϵ⋆0 be an innovation that has the same
distribution as ϵ0 but independent of (ϵk )k∈R, then
X ⋆

i = G(Fi) = (· · · , ϵ−1, ϵ
⋆
0, ϵ1, · · · , ϵi−1, ϵi).

• T.Zhang(2021) proposed to consider adversarial tail dependence
measure

θx(i) = sup
z≥x

pr(X ⋆
i ≤ z | Xi ≥ z).

• We say a time series process (Xi) is tail adversarial q−stable, or
(Xi) ∈ TASq if

lim
x↑UF

Θx,q(0) = lim
x↑UF

∞∑
i=0

{θx(i)}1/q
<∞,

for q ≥ 1.
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Tail Adversarial Stability Framework

• We say a time series process (Xi) is geometrically tail adversarial
stable, or (Xi) ∈ GTAS if there exists constant c⋆ ∈ (0,∞),and
ϕ ∈ (0,1) such that

θX (i) ≤ c⋆ϕi , i ≥ 0,

holds for some x that is close enough to UF .
• TAS framework lays a convenient and mathematically rigorous

foundation for developing limit theorems of tail dependent time
series.

• It’s been proven that TAS could produce the same results under
weaker conditions in some scenarios.

• It also provides flexibility and interpretability to data analysis
practice.

Ting Zhang and Beibei Xu Tail Spectral Density Estimation and Its Uncertainty Quantification: Another Look at Tail Dependent Time Series AnalysisJune 26, 2023 8 / 20



Main Results

• Recall tail spectral density estimator :

f̂n(λ) =
1

2π

∑
|k|<n

ρ̂k,neιkλK
(

k
Bn

)
.

Theorem (Consistency)
Under some regularity conditions including (Xi) ∈ TAS4, for any λ ∈ [0,2π),

f̂n(λ)− fn(λ)→p 0.

• This asymptotic consistency result requires weaker conditions on tail
dependence and allows more extremal tails as nF̄ (xn)→∞ v.s.
n1/3F̄ (xn)→∞.
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Main Results

Theorem (Central Limit Theorem)
Under some regularity conditions including (Xi) ∈ GTAS then

(i) for λ ∈ [0,2π) \ {0, π},where fn(λ) is bounded away from zero for all large
n,

{κ1/2fn(λ)}−1(B−1
n n)1/2{f̂n(λ)− fn(λ)} →d N(0,1);

and (ii) for λ ∈ {0, π} where fn(λ) is bounded away from zero for all large n,

{κ1/2fn(λ)}−1(B−1
n n)1/2{f̂n(λ)− fn(λ)} →d N(0,2),

where κ =
∫

u∈R K 2du.

• Fun fact: different variance!
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Tail dependent Time Series Analysis

Data Implementation
• Time series data in the fields of climate science, ecological science,

finance, economics, and so on could contain some dependency in
their tail part.

• We present the data application results of a financial data set and a
temperature data set.

• And compared the results of traditional spectral density estimation
and tail spectral density analysis.

Ting Zhang and Beibei Xu Tail Spectral Density Estimation and Its Uncertainty Quantification: Another Look at Tail Dependent Time Series AnalysisJune 26, 2023 11 / 20



Data Implementation
A Financial Data Set

• Data set : JPM daily stock price 03/17/1980 to 10/15/2021. Lower tail part of
the log return. 99% quantile as threshold.

• Autocorrelation function for conventional method(left) and tail spectral
density function(right) with noninformative lag 0.
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Data Implementation

A Financial Data Set

• Autocorrelation function for conventional method(left) and tail spectral
density function(right).
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Data Implementation

A Financial Data Set

• Spectral Density Plots: Traditional Spectral Density Analysis (left), and Tail
Spectral Density Method (right).
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Data Implementation
A Temperature Data Set

• Data set : Monthly averages of daily high temperatures in the United States,
03/1840 to 05/2016. 95% quantile as threshold.

• Autocorrelation function for traditional method(left) and tail spectral density
function(right) with noninformative lag 0.
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Data Implementation

A Temperature Data Set

• Autocorrelation function for traditional method(left) and tail spectral density
function(right).
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Data Implementation

A Temperature Data Set

• Spectral Density Plots: Traditional Spectral Density Analysis (left), and Tail
Spectral Density Method (right).
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Conclusion

Takeaway
• We considered the estimation for tail spectral density with focus on

serial dependence in the tail region.
• TAS framework could achieve a weaker condition under certain

circumstances.
• The resulted method constructs confidence interval that gauges the

statistical uncertainty of the estimator, and captures the tail
dependency traditional method otherwise cannot.
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Many thanks for your time!
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